Lec 11

Object Re-Identification

Zhu Li
Dept of CSEE, UMKC
Office: FH560E, Email: lizhu@umkc.edu, Ph: x 2346.
http://l.web.umkc.edu/lizhu
Outline

- ReCap of Lecture 10
 - SVM
- HW-2
- Visual Object Re-Identification
- Summary
ReCap of Lec 10

- Support Vector Machine:
SVM Summary

- What is a good classifier?
 - Not only good precision-recall performance at training (empirical risk function), but also need to consider the model complexity
 - Structural Risk: penalizing by VC dimension

- VC dimension
 - Is a good measure of model complexity
 - How many data points a certain classifier can shatter

- SVM:
 - For linear hyperplane decision function, structural risk minimization is equivalent to gap maximization
 - Lagrangian Relaxation & Primal-Dual decomposition
 - Support Vectors: mathematically, are data points that has non-zero Lagrangian associated with
 - Kernel Trick: implicit mapping to higher dimensional richer structure space. Heuristic, may have overfitting risks (e.g. RBF)
Primal-Dual Decomposition

Let's write the Lagrangian

$$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{n} \alpha_i y_i (w \cdot x_i + b) + \sum_{i=1}^{n} \alpha_i$$

The derivatives

$$\frac{\partial L(w, b, \alpha)}{\partial w} = w - \sum_{i=1}^{n} \alpha_i y_i x_i, \quad \Rightarrow w = \sum_{i=1}^{n} \alpha_i y_i x_i$$

$$\frac{\partial L(w, b, \alpha)}{\partial b} = -\sum_{i=1}^{n} \alpha_i y_i, \quad \Rightarrow \sum_{i=1}^{n} \alpha_i y_i = 0$$

So the dual function

$$q(\alpha) = \inf_{w, b} L(w, b, \alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j (x_i \cdot x_j)$$
SVM on HoG in Matlab

SVM is only dealing with a 2-class problem

% hogs svm
[n_img, kd]=size(hogs);
hogs_lbl = zeros(1, n_img); hogs_lbl(1:20) = 1;
svm_hogs = svmtrain(hogs, hogs_lbl);
% recog
rec_lbls = svmclassify(svm_hogs, hogs);

fprintf('
error rate = %1.4f', sum(abs(hogs_lbl - rec_lbls'))/n_img);

stem(abs(hogs_lbl - rec_lbls'), '.'); hold on; grid on;
axis([1 160 0 5]); str=sprintf('err rate=%1.2f ', sum(abs(hogs_lbl - rec_lbls'))/n_img); title(str);
For the first 4 image sets: against the rest

2: Faces_easy

3: Leopards

26: cougar_face

33: dollar_bill
Homework 2: Aggregation

- Compute SIFT Codebook
 - SIFT dimension reduction: $kd=24, 32$;
 - SIFT Kmeans: $nc=64, 128$.
 - SIFT GMM: $nc=64, 128$;

- VLAD Aggregation:
 - Hard assignment VLAD
 - Soft assignment VLAD

- Fisher Vector Aggregation:
 - 1st order FV via vl_feat tools

- Matching Experiment
 - Like in HW-1

- Retrieval Experiment:
 - Compute mAP
Outline

- Recap of Lecture 10
 - SVM
- HW-2
- Visual Object Re-Identification
- Summary
Object Re-Id Outline

- The Problem and MPEG CDVS Standardization Scope

- CDVS Query Extraction and Compression Pipeline
 - Key point Detection and Selection (ALP, CABOX, FS)
 - Global Descriptor: Key points aggregation and compression (SCFV, RVD, AKULA)
 - Local Descriptor: Key points and coordinates compression

- CDVS Query Processing
 - Pair-wise Matching
 - Retrieval
 - Indexing

- CDVA Work
 - Handling video input
 - Image/Video Understanding

- Summary
Mobile Visual Search Problem

- CDVS: Object Identification: bridging the real and cyber world

- Image Understanding/Tagging: associate labels with pixels
CDVS Scope

- MPEG CDVS Standardization Scope
 - Define the visual query bit-stream extracted from images
 - Front-end: image feature capture and compression
 - Server Back-end: image feature indexing and query processing

- Objectives/Challenges:
 - **Real-time**: front end real time performance, e.g., 640x480 @30fps
 - **Compression**: Low bit rate over the air, achieving 20 X compression w.r.t to sending images, or 10X compression of the raw features.
 - **Matching Accuracy**: >95% accuracy in pair-wise matching (verification) and >90% precision in identification
 - **Indexing/Search Efficiency**: real time backend response from large (>100m) visual repository
Object Re-Identification via SIFT

What are the problems?

- Accuracy
- Speed
- Query Compression
- Localization
Technology Time Line

Major progress in computer vision research

1998

Recognition of SIFT in CV community

2000

SIFT algorithm invented

2002

MPEG-7 core: Parts 1-5

2004

MPEG-7 Parts 6-12

2006

MPEG-7 Visual Signatures

2008

Compact Descriptors for Visual Search

2010

First visual search applications

2012

MPEG starts work on CDVS

First iPhone

SURF

CHoG

Z. Li, Image Analysis & Retrieval. 2016

MPEG-7 CDVS, 8th FP7 Networked Media Concentration meeting, Brussels, December 13, 2011.
(thanks, Yuriy !)
CDVS Data Set Performance

- Annotated Data Set:
 - Mix of graphics, landmarks, buildings, objects, video clips, and paintings.
 - Approx 32k images

- Distraction Set:
 - Approx 1m images from various places

- Image Query Size
 - 512bytes to 16K bytes
 - 4k~8k bytes are the most useful
The (Long)MPEG CDVS Time Line

<table>
<thead>
<tr>
<th>Meeting / Location / Date</th>
<th>Action</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>96th meeting, Geneva Mar 25, 2011</td>
<td>Final CfP published Available databases and evaluation software.</td>
<td></td>
</tr>
<tr>
<td>97th meeting, Torino July 18-23, 2011</td>
<td>Last changes in databases and evaluation software</td>
<td>Dataset: 30k annotated images + 1m distractor images</td>
</tr>
<tr>
<td>98th meeting, Geneva Nov 26 – Dec 2, 2011</td>
<td>Evaluation of proposals</td>
<td>11 proposals received, selected TI Lab test model under consideration</td>
</tr>
<tr>
<td>99th meeting, San Jose Feb 10, 2012</td>
<td>WD</td>
<td>Working Draft 1</td>
</tr>
<tr>
<td>100th meeting, Geneva March 4, 2012</td>
<td>WD</td>
<td>Working Draft 2</td>
</tr>
<tr>
<td>106th meeting, Geneva Oct, 2013</td>
<td>CD</td>
<td>SIFT patent issue</td>
</tr>
<tr>
<td>108th meeting, Valencia Mar, 2014</td>
<td>DIS</td>
<td>Committee Draft</td>
</tr>
</tbody>
</table>

Z. Li, Image Analysis & Retrv. 2016
Outline

- The Problem and CDVS Standardization Scope

- CDVS Query Extraction and Compression Pipeline
 - Key point Detection and Selection (ALP, CABOX, FS)
 - Global Descriptor: Key points aggregation and compression (SCFV, RVD, AKULA)
 - Local Descriptor: Key points and coordinates compression

- CDVS Query Processing
 - Pair-wise Matching
 - Retrieval
 - Indexing

- CDVA Work
 - Handling video input
 - Image/Video Understanding

- Summary
CDVS Query Processing Pipeline

- **KD** - Keypoint Detection
 - ALP, BFLoG, CABOX

- **FS** - Feature Selection

- **GD** - Global Descriptor from key points *aggregation*
 - SCFV, RVD, AKULA

- **LD** – Local Descriptor
 - SIFT compression, spatial coordinates compression
How SIFT Works

Detection: find extrema in spatial-scale space

- Scale space is represented by LoG filtering output, but approximated in SIFT by DoG

Key Points Representation: 128 dim
Keypoint (SIFT) Detection

Main motivation
- Find invariant and repeatable features to identify objects
 - Many options, SURF, SIFT, BRISK, … etc, but SIFT still best performing
- Circumvent the SIFT patent, which was sold to an unknown third company
 - SIFT patent main claim: DoG filtering to reconstruct scale space
- Extraction Speed: can we be faster than DoG?

Main Proposals:
- Telecom Italia: ALP – Scale Space SIFT Detector (adopted !)
- Samsung Research: CABOX – Integral Image Domain Fast Box Filtering (incomplete results)
- Beijing University/ST Micro/Huawei: Freq domain Gaussian Filtering (deemed not departing far enough from the SIFT patent)
Telecom Italia: Gianluca Francini, Skjalg Lepsoy, Massimo Balestri

Key idea, model the scale space response as a polynomial function, and estimate its coefficients by LoG filtering at different scales:

\[
\begin{align*}
 h(x, y, \sigma) &= \sigma^2 \cdot \left(\frac{d^2}{dx^2} + \frac{d^2}{dy^2}\right) g(x, y, \sigma) \\
 h(m, n, \sigma) &\approx \sum_{k=1}^{K} \gamma_k(\sigma) \cdot h(m, n, \sigma_k) \\
 \gamma_k(\sigma) &\approx a_k \sigma^3 + b_k \sigma^2 + c_k \sigma + d_k
\end{align*}
\]

LoG kernel at any scale can be expressed as l.c. of 4 fixed scale kernels.
ALP – Scale Space Response

Express the scale response at \((x, y)\), as a 3\(^{rd}\) order polynomial

\[
p(x, y, \sigma) = \alpha_3(x, y)\sigma^3 + \alpha_2(x, y)\sigma^2 + \alpha_1(x, y)\sigma + \alpha_0(x, y)
\]

The polynomial coefficients are obtained by filtering, where \(L_k\) is the LoG filtered image at pre-fixed scale \(k\):

\[
\begin{array}{cccc}
 k & a_k & b_k & c_k \\
 0 & -0.2464 & 2.5021 & -8.2007 & 8.6432 \\
 1 & 0.4934 & -4.5636 & 12.9824 & -10.8424 \\
 2 & -0.2717 & 2.0108 & -4.0449 & 2.1204 \\
 3 & 0.0140 & 0.1549 & -1.0565 & 1.3886 \\
\end{array}
\]

\[
\alpha_3(x, y) = \sum_{k=0}^{K-1} a_k \cdot L_k(x, y)
\]

\[
\alpha_2(x, y) = \sum_{k=0}^{K-1} b_k \cdot L_k(x, y)
\]

\[
\alpha_1(x, y) = \sum_{k=0}^{K-1} c_k \cdot L_k(x, y)
\]

\[
\gamma_k(\sigma)
\]

\[
\alpha_0(x, y) = \sum_{k=0}^{K-1} d_k \cdot L_k(x, y)
\]
ALP Scale Space Extrema Detection

ALP filtering scale space response as polynomials

- Scale Space Extrema: \((I \ast h)[430, 122, \sigma] \approx 2.85 \sigma^3 - 39.51 \sigma^2 + 172.65 \sigma - 172.61\)

- No Extrema (saddle point): \((I \ast h)[153, 356, \sigma] \approx 0.12 \sigma^3 - 1.06 \sigma^2 + 3.15 \sigma - 2.5\)
Displacement refinement

Scale response as a 2nd order polynomial function of displacement \((u, v)\)

\[
(I * h)[x - u, y - v, \sigma] \\
\approx \beta_5(x, y, \sigma)u^2 + \beta_4(x, y, \sigma)v^2 + \beta_3(x, y, \sigma)uv + \beta_2(x, y, \sigma)u + \beta_1(x, y, \sigma)v + \beta_0(x, y, \sigma)
\]
Repeatability vs VL_FEAT SIFT:
Approximate DoG/LoG by a cascade of box filters that can offer early termination:

- Very fast integral image domain box filtering,
- The box filters are found by solving the following problem, sparse combination of box filters, via LASSO:

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{2} \| g - Bh \|_2^2 + \lambda \| h \|_1 \\
\text{subject to} & \quad 1^T Bh = \alpha
\end{align*}
\]
The influence of the used dictionary determines not only the quality of the approximation but also the number of boxes required.
CABOX Detection Results

More examples of keypoint detection using box filters.

Overlap: 85%

Overlap: 88%

• Algorithmically the fastest SIFT detector amongst CE1 contributions
• Ref: V. Fragoso, G. Srivastava, A. Nagar, Z. Li, K. Park, and M. Turk, "Cascade of Box (CABOX) Filters for Optimal Scale Space Approximation", *Proc of the 4th IEEE Int'l Workshop on Mobile Vision*, Columbus, USA, 2014
Why do Feature Selection?

- Average 1000+ SIFTs extracted for VGA sized images, need to reduce the number of actual SIFTs sent
- Not all SIFTs are created equal in repeatability in image match,
 - model the repeatability as a prob function \([\text{Lepsøy, S., Francini, G., Cordara, G., & Gusmao, P. P. (2011). Statistical modelling of outliers for fast visual search. IEEE VCIDS 2011.}]\) of SIFT’s scale, orientation, distance to the center, peak strength, etc:
 \[
 r(\sigma^*, \theta, D, d, \rho, p_{\sigma\sigma}) = f_1(\sigma^*) \cdot f_2(\theta) \cdot f_3(d) \cdot f_4(D) \cdot f_5(\rho) \cdot f_6(p_{\sigma\sigma}).
 \]
- Use self-matching (m29359) to improve the offline repeatability stats robustness

\[
f(\sigma)
\]

\[
\sigma
\]

Self-matching via random out of plane rotation
Illustration of FS via offline repeatability PMF

- SIFT peak strength pmf
- SIFT scale pmf
- Combined scale/peak strength pmf
Why need global descriptor?

- Key points based query representation is not stateless, it has a structure, i.e., SIFTs and their positions. This is not good for retrieval against a large database, complexity $O(N)$.
- Need a “coarser” representation of the information contained in the image by aggregating local features, for indexing/hashing purpose.

CDVS Global Aggregation Works

- m28061: Beijing University SCFV: for retrieval/identification
- m31491: Samsung AKULA: for matching/verification
- M31426: Univ of Surrey/VisualAtom: RVD: similar to SCFV
Global Descriptor – SCFV (m28061)

Beijing University SCFV – Scalable Compressed Fisher Vector

- PCA to bring SIFT down from 128 to 32 dimensions
- Train a GMM of 128 components in 32 dim space, with parameters \{ u_i, \sigma_i, w_i \}
- Aggregate m=300 SIFT with GMM via Fisher Vector, 1st, and 2nd order,

\[g_{u_i}^X = \frac{\partial \mathcal{L}(X|\lambda)}{\partial u_i} = \frac{1}{\sqrt{300w_i}} \sum_{t=1}^{300} \gamma_t(i) \left(\frac{x_t - u_i}{\sigma_i} \right) \]

where \(\gamma_t(i) \) is the prob of SIFT \(x_t \) being generated by GMM component \(i \),

\[g_{\sigma_i}^X = \frac{\partial \mathcal{L}(X|\lambda)}{\partial \sigma_i} = \frac{1}{\sqrt{600w_i}} \sum_{t=1}^{300} \gamma_t(i) \left[\left(\frac{x_t - u_i}{\sigma_i} \right)^2 - 1 \right] \]

where

\[\gamma_t(i) = p(i|x_t, \lambda) = \frac{w_i p_i(x_t|\lambda)}{\sum_{j=1}^{128} w_j p_j(x_t|\lambda)} \]
The SCFV has 32x128 bits, for the 1st order Fisher Vector, and additional 32x128 bits for the 2nd order FV.

Not all GMM components are active, so an 128-bit flag \([b_1, b_2, \ldots, b_{128}]\) is also introduced to indicate if it is active. Rationale: if not many SIFTSs are associated with certain component, then the bits it generates are noise most likely.

Distance metric:

\[
S_{X,Y} = \frac{\sum_{i=1}^{128} b_i^X b_i^Y w_{Ha(u_i^X, u_i^Y)} (32 - 2Ha(u_i^X, u_i^Y))}{32 \sqrt{\sum_{i=1}^{128} b_i^X} \sqrt{\sum_{i=1}^{128} b_i^Y}}
\]

A lot of painful work on GMM component turn on logic optimization to reach a very high performance.

Very fast due to binary ops, can short list a 1m image data base within 1 sec on desktop computer.
SCFV Performance

Matching/Verification (TPR @ 1% FPR)

Retrieval/Identification (mAP)
SIFT Descriptor Compression

- VisualAtoms/Univ of Surrey: a handcrafted transform/quantization scheme + huffman coding, low memory cost, slightly less performance (compared to PVQ), adopted.
- Only binary form is received, cannot recover the SIFT

\[
\begin{align*}
\tilde{v}_j = \begin{cases}
-1 & \text{if } v_j \leq QL_j \\
0 & \text{if } v_j > QL_j \text{ and } v_j \leq QH_j \\
+1 & \text{if } v_j > QH_j
\end{cases}
\end{align*}
\]

Transform A
\[
\begin{align*}
v_0 &= (h_2 - h_6)/2 \\
v_1 &= (h_3 - h_7)/2 \\
v_2 &= (h_0 - h_1)/2 \\
v_3 &= (h_2 - h_3)/2 \\
v_4 &= (h_4 - h_5)/2 \\
v_5 &= (h_6 - h_7)/2 \\
v_6 &= ((h_0 + h_4) - (h_2 + h_6))/4 \\
v_7 &= ((h_0 + h_2 + h_4 + h_6) - (h_1 + h_3 + h_5 + h_7))/8
\end{align*}
\]

Transform B
\[
\begin{align*}
v_0 &= (h_0 - h_4)/2 \\
v_1 &= (h_1 - h_5)/2 \\
v_2 &= (h_7 - h_0)/2 \\
v_3 &= (h_1 - h_2)/2 \\
v_4 &= (h_3 - h_4)/2 \\
v_5 &= (h_5 - h_6)/2 \\
v_6 &= ((h_1 + h_5) - (h_3 + h_7))/4 \\
v_7 &= ((h_0 + h_1 + h_2 + h_3) - (h_4 + h_5 + h_6 + h_7))/8
\end{align*}
\]
Outline

- The Problem and CDVS Standardization Scope
- CDVS Query Extraction and Compression Pipeline
 - Key point Detection and Selection (ALP, CABOX, FS)
 - Global Descriptor: Key points aggregation and compression (SCFV, RVD, AKULA)
 - Local Descriptor: Key points and coordinates compression
- CDVS Query Processing
 - Pair-wise Matching
 - Retrieval
 - Indexing
- CDVA Work
 - Handling video input
 - Image/Video Understanding
- Summary
Diagram of Image Matching

- First local features are matched,
- if certain number of matched SIFT pairs are identified, then a Geometric Verification called DISTRAT[] is performed, to check the consistence of the matching points via distance ratio check.

- For un-sure image pairs, the global descriptor distance is computed and a threshold is applied to decide match of non-match.
Matching Performance (@ 1% FPR)

- **Image Matching Accuracy:**
 - Mix of graphics, landmarks, buildings, objects, video clips, and paintings.

- **Image Identification Accuracy:**
 - For graphics (cd/book cover, logos, papers), paintings, the performance is in 90% range
 - For objects of mixed variety, 78% in average.
 - For buildings/landmark, the performance is not reflective of the true potential, as the current data set has some annotation errors.
CDVS Retrieval

Retrieval Pipeline

- Short list is generated by GD based k-nn operation via:

\[
d(R, Q) = \frac{\sum_{i=1}^{512} b_i^Q W_1^{H_1(u_i^Q, u_i^R)} W_2^{u_i^Q} (D - 2H_1(u_i^Q, u_i^R))}{(\sum_{i=1}^{512} b_i^Q)^{0.3} (\sum_{i=1}^{512} b_i^R)^{0.3}}
\]

- Then for the short list of m candidates, do m times local descriptor based matching and rank their matching scores
Retrieval Performance: Mean Average Precision

- mAP measures the retrieval performance across all queries

- Also called “average precision at seen relevant documents”
- Determine precision at each point when a new relevant document gets retrieved
- Use $P=0$ for each relevant document that was not retrieved
- Determine average for each query, then average over queries

\[
MAP = \frac{1}{N} \sum_{j=1}^{N} \frac{1}{Q_j} \sum_{i=1}^{Q_j} P(doc_i)
\]

with:
- Q_j number of relevant documents for query j
- N number of queries
- $P(doc_i)$ precision at ith relevant document

Image Analysis & Understanding, 2015
mAP example

- MAP is computed across all query results as the average precision over the recall

<table>
<thead>
<tr>
<th>Query 1</th>
<th>Rank</th>
<th>Relev.</th>
<th>(P(doc_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>X</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>X</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVG:</td>
<td></td>
<td>0.564</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Query 2</th>
<th>Rank</th>
<th>Relev.</th>
<th>(P(doc_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>X</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>AVG:</td>
<td></td>
<td>0.623</td>
<td></td>
</tr>
</tbody>
</table>

- MAP favours systems which return relevant documents fast
- Precision-biased

\[
MAP = \frac{0.564 + 0.623}{2} = 0.594
\]
CDVS Retrieval Performance

Retrieval Simulation Set Up

- Approx. 17k annotated images mixed with 1m+ distraction image set
- Short Listing: retrieve 500 closest matches by GD and then do pairwise matching and ranking
- Data sets

1. Mixed Graphics

2. Paintings

3. Video Frames

4. Buildings/Landmarks

5. Common Objects

mAP

- query rate=2k
- query rate=4k
- query rate=8k
- query rate=16k
MBIT (multi-block index table) Indexing

- GD is partitioned into blocks of 16 bits, and inverted list built.
- Shortlisting is by weighted scoring on block wise hamming distance

Algorithm . MBIT Searching

Input: Query $B_q = \{b^q_m\}_{m=1}^{1024}$, MBIT $T = \{T_m\}_{m=1}^{1024}$, speedup ratio T, difference bits D.

Output: The shortlist $\{B_k\}_{k=1}^{L}, L = 500$.

1. Initialize $s(q, n) = 0, n = 1 ... N$.
2. for $m = 1$ to 1024 do
3. if the $\frac{m+1}{2}$-th Gaussian of B_q is not selected then
4. continue;
5. end if;
6. end for
7. for $d = 0$ to D do
8. Enumerate binary vectors $\{h_d\}$ with d-bit differences with b^q_m.
9. For each image n in the buckets $T_m(h_d)$, update $\#_{n,d} = \#_{n,d} + 1$.
10. end for
11. end for
12. for $n = 1$ to N do
13. Update $s(q, n) = \sum_{d=0}^{D} \#_{n,d}$;
14. end for
15. Sort the image list by their voting score in descending order.
16. Add descriptors of top $\frac{N}{T}$ images in the ordered list into subset $\{B_k\}_{k=1}^{K}$.
17. Run an exhaustive search within $\{B_k\}_{k=1}^{K}$ and sort the list by Hamming distance.
18. Return the first $L = 500$ images.
Selecting 6-bits segments that are most efficient in discriminating for shortlisting, allow for permutation of bits

Shortlisting by weighted segment hamming distance also reflecting the segment entropy

Outline

- The Problem and CDVS Standardization Scope
- CDVS Query Extraction and Compression Pipeline
 - Key point Detection and Selection (ALP, CABOX, FS)
 - Global Descriptor: Key points aggregation and compression (SCFV, RVD, AKULA)
 - Local Descriptor: Key points and coordinates compression
- CDVS Query Processing
 - Pair-wise Matching
 - Retrieval
 - Indexing
- CDVA Work
 - Handling video input
 - Image/Video Understanding
- Summary
Automotive & AR Use Case

- Extend to object Identification / event detection for video input:
 - How do we deal with vastly increased data rate?
 - New spatial-temporal interesting points?
 - Key frame based CDVS processing?
 - How do we explore the temporal dimension?
 - Events detection, content classification (video archiving)
CDVS is based on a handcrafted feature, i.e., SIFT and SIFT aggregation.

Latest work in Deep Learning pointing to new potentials in CCN to uncover new structure and knowledge from pixels, to associate with not only object identity, but also image labels.
Summary

- MPEG CDVS offers the state-of-art tech performance in visual object re-identification accuracy, speed, and query compression.

- Amd work:
 - A recoverable SIFT compression scheme, currently SIFT cannot be recovered from bit stream.
 - 3D key points, wide adoption of RGB+Depth sensors.
 - Non-rigid body object identification.

- CDVA work, still refining the problem definition, main use cases:
 - Object identification in video.
 - Events detection, content classification.
 - Image Understanding (vs object identification).
Key References

- Test Model 11: ISO/IEC JTC1/SC29/WG11/N14393
- SoDIS: ISO/IEC DIS 15938-13 Information technology — Multimedia content description interface — Part 13: Compact descriptors for visual search
- Signal Processing – Image Communication, special issue on visual search and augmented reality, vol. 28(4), April 2013. Eds. Giovanni Cordara, Miroslaw Bober, Yuriy A. Reznik:
- ALP: m31369 CDVS: Telecom Italia’s response to CE1 – Interest point detection
- RVD: m31426 Improving performance and usability of CDVS TM7 with a Robust Visual Descriptor (RVD)